シラバスの詳細な内容を表示します。
→ 閉じる(シラバスの一覧にもどる)
開講年度 | 2020 年度 | |
---|---|---|
開講区分 | 教養教育・教養基盤科目・基礎教育 | |
受講対象学生 |
学部(学士課程) : 1年次 工学部 総合工学科 応用化学コース1年(工・1C46-) クラス指定 |
|
授業科目名 | 基礎微分積分学I | |
きそびぶんせきぶんがくいち | ||
Basic Calculus I | ||
単位数 | 2 単位 | |
ナンバリングコード | libr-fndt-MATH1521-007
|
|
開放科目 | 非開放科目 | |
分野 | ||
開講学期 |
前期 |
|
開講時間 |
火曜日 1, 2時限 |
|
開講場所 | ||
担当教員 | 大貫洋介(非常勤講師) | |
OHNUKI, Yosuke | ||
SDGsの目標 |
|
授業の概要 | 関数の微分について学習する。前半は1変数関数、後半は2変数関数を中心に扱い、微分を利用した様々な応用について学習する。 |
---|---|
学修の目的 | 専門科目の学習に活かすために、関数の取り扱いに慣れ、1変数関数の微分、2変数関数の偏微分の理解とその応用ができる。 |
学修の到達目標 | 1変数関数については、初等関数の取り扱いに加えて、テーラー展開を理解し、計算できる。 2変数関数に関しては、偏微分の理解を深め、様々な極値問題を解決できる。 |
ディプロマ・ポリシー |
|
成績評価方法と基準 | 中間試験、期末試験により80%、小テスト、課題により20%とする(最終評価で60%以上で合格)。 |
授業の方法 | 講義 演習 |
授業の特徴 |
その他、能動的要素を加えた授業(ミニッツペーパー、シャトルカードなど) |
授業改善の工夫 | 授業時間内では基本事項の演習時間などが十分には取れない。あらかじめ教科書や指定した資料を学習してくること。 |
教科書 | 基礎の数学 線形代数と微分積分、瀬山士郎(著)、朝倉書店、ISBN 978-4-254-11072-2 |
参考書 | |
オフィスアワー | |
受講要件 | |
予め履修が望ましい科目 | |
発展科目 | |
その他 |
MoodleのコースURL |
---|
キーワード | テーラー展開、偏微分、極大値、極小値 |
---|---|
Key Word(s) | Taylor series, partial derivative, maximum and minimum value |
学修内容 | 1.初等関数、逆三角関数 2.逆三角関数の微分 3.初等関数のテーラー展開 4.関数の極値 5.2変数関数 6.2変数2次関数 7.偏導関数 8.中間試験 9.テーラー展開 10.2変数関数の極値 11.重積分 12.累次積分 13.重積分の応用1 14.重積分の応用2 15.まとめ |
事前・事後学修の内容 | (事前学修)基本的にシラバス通りに進めるので、事前に範囲の教科書を読み込み、例題を解いておくこと。 (事後学修)授業で学修した範囲の教科書の問題を解いておくこと。また、授業資料等はweb等で配布するので十分に理解しておくこと。 |