三重大学ウェブシラバス


シラバス表示

 シラバスの詳細な内容を表示します。

→ 閉じる(シラバスの一覧にもどる)

科目の基本情報

開講年度 2017 年度
開講区分 教養教育・教養基盤科目・基礎教育
受講対象学生 学部(学士課程) : 1年次
教育学部数学教育・情報教育コース1年
選択・必修 選択
授業科目名 基礎数学演習Ⅱ
きそすうがくえんしゅう2
Seminar in Basic Mathematics Ⅱ
単位数 1 単位
分野
開放科目 非開放科目
市民開放授業 市民開放授業ではない
開講学期

後期

開講時間 木曜日 9, 10時限
開講場所

担当教員 玉城政和

TAMASHIRO, Masakazu

学習の目的と方法

授業の概要 基礎線形代数学Ⅱ,基礎微分積分学Ⅱの理解に必要な演習を行うとともに,アクティブラーニングのために,自ら問題を発見し解決する力,およびクラスの中でそれを説明し理解を得るためのコミュニケーション能力も育てる.これらは,専門課程における代数学演習,解析学演習,幾何学演習においてよりアクティブに学ぶための基礎となる.
学習の目的 線形代数学と微分積分学の力を養うこと,それらの問題の発見,解決を通してアクティブに学ぶこと,およびこれらの活動を通してクラスの中でのコミュニケーション能力を育てることを目的とする.
学習の到達目標 ・逆行列,固有値,固有空間を理解し,計算方法を説明できるようにする.
・ベクトル空間の定義と性質を理解し,具体例を説明できるようにする.
・テイラー展開の定義と計算を理解し,具体例を説明できるようにする.
・偏微分の定義と計算を理解し,具体例を説明できるようにする.
・様々な関数の積分を計算できるようにし,方法を説明できるようにする.
ディプロマ・ポリシー
○ 学科・コース等の教育目標

○ 全学の教育目標
感じる力
  • ○感性
  • ○共感
  •  倫理観
  • ○モチベーション
  • ○主体的学習力
  •  心身の健康に対する意識
考える力
  • ○幅広い教養
  • ○専門知識・技術
  • ○論理的思考力
  • ○課題探求力
  • ○問題解決力
  • ○批判的思考力
コミュニケーション力
  • ○情報受発信力
  • ○討論・対話力
  • ○指導力・協調性
  •  社会人としての態度
  •  実践外国語力
生きる力
  • ○感じる力、考える力、コミュニケーション力を総合した力

授業の方法 演習

授業の特徴 PBL 能動的要素を加えた授業 グループ学習の要素を加えた授業 Moodle

教科書 特に指定はしないが,基礎線形代数学Ⅱ,基礎微積分学Ⅱの教科書を持参すること.
参考書
成績評価方法と基準 期末試験,発表,出席状況,レポート提出状況,受講態度等を総合的に評価する.
オフィスアワー 毎週水曜日 12:00 - 13:00,解析学第1研究室(教育学部1号館4階)
受講要件
予め履修が望ましい科目 基礎数学演習Ⅰ
発展科目 代数学演習,解析学演習,幾何学演習
授業改善への工夫 授業アンケート等をもとに逐次対応する
その他

授業計画

キーワード 逆行列,ベクトル空間,固有空間,テイラー展開,偏微分,積分
Key Word(s) inverse matrix, vector spaces, eigenspaces, Taylor's expansion, partial differentiation, integration
学習内容 1.余因子展開と余因子行列の演算(第1回~第3回)
2.様々な関数のテイラー展開(第4回~第6回)
3.逆行列とその応用(第7回~第9回)
4.偏微分の計算(第10回~第12回)
5.固有空間、積分の応用(第13回~第15回)
6.定期試験(第16回)
学習課題(予習・復習) 毎時の授業終了時に指示する
ナンバリングコード(試行) LIMATH1

※最初の2文字は開講主体、続く4文字は分野、最後の数字は開講レベルを表します。 ナンバリングコード一覧表はこちら


Copyright (c) Mie University